Using LIME to Interpret a Random Forest Model with an Application to Bullet Matching Data

Introduction and Objectives

Random forests are accurate predictive models, but they are difficult to interpret.
LIME is a method that was designed to provide local interpretations for any predictive model (Ribiero et. al. 2016).
We want to assess a random forest model fit to a bullet matching dataset to understand cases where the model made incorrect predictions.
We applied LIME to the random forest, but we found some unsatisfactory results which led us to develop some diagnostic tools for LIM

Bullet Signature Comparison Data

To determine if two bullets were fired from the same gun, Hare, Hofmann, and Carriquiry (2017) took high definition scans of bullets from the Hamby study (Hamby et. al. 2009).
They extracted signatures from the scans They extracted signalues from a scans of the striations found on the six lands (raised panels) of a bullet.
 Land Figure 1: The picture on the left of a bullet shows the alternating land and grove referred to as lands. The image on the right shows a representation of the comparison of two signatures obtained from the scans of bullet lands.
They developed nine numeric features that quantify the similarity between two signatures.
e.g. Consecutively Matching Striae (cms): number of
consecutive peaks two signatures have in
Finally, they fit a random forest to the features to predict whether two bullets were fired from the same gun.

Figure 2: This diagram is a representation of how a prediction is made to determine random forest prediction is obtained by aggregating the results from many random forest prediction is obtained by aggregating the results from many
classification trees. The model fit by Hare, Hofmann, and Carriquiry used 300 trees. The circles in the trees represent the features chosen by the tree, and the rectangles represent the classification at the end of a path. The bold lines represent the paths
corresponding to the observation of interest. In the case depicted, the average of corresponding to the observation of interest. In the case depicted, the average of
the 300 tree predictions results in a random forest prediction of a non-match.

Application of LIME to Bullet Matching Data

LIME fits a simple interpretable model in a local region that mimics the complex model. Procedure for one prediction of interest:

1. Simulate data based on observed data (multiple ways to do this)
2. Apply random forest to simulated data to obtain predictions
3. Fit a simple interpretable model (such as a linear regression model) that assigns the most weight to observations closest to the prediction of interest

號 to explain the complex model

Figure 3: These plots show different views of the random forest prediction probabilities of a match versus the featur non_cms. The plot on the left is a global view of all observations in the bullet data, which shows a complex relationship between the variables, so the linear model is not a good fit. The middle plot shows a local view of the
relationship with non_cms restricted between 0 and 3 , and the right plot shows the same region but with non_cms divided into two bins. Both of these plots show a simpler relationship, which is the idea that LIME makes use of.

- We used the random forest model from Hare, Hofmann, and Carriquiry (2017) to make predictions on a new set of bullet scans and applied LIME to these predictions using the lime R predictions on a new set of bullet scans and applied LIME to these predictions
package (Pederson and Benesty 2018) using the default simulation method.
package (Pederson and Benesty 2018) using the defaut simulation method.
It produced some results that contradicted the random forest predictions. We tried the other three simulation methods available in the R package, but they also produced strange results.

Figure 4: This depicts all pairwise comparisons of six lands from two bullets in the new set fired from the
same gun. The color of the tile represents the random forest probability that the lands are a match, and the " x " indicates a prediction where the model is wrong. (The upper right is left blank since the

Figure 5: These plots show LIME "explanations" for the comparisons are the same as the bottom left.) random forest prediction marked by the " "x" in Figure 4 for four simulation methods. The selected features are on the y-axes, x-axes, and the color represents" whether the feature suppots x-axes, and the color represents whether the feature supports
a match or non-match. The bars supporting a match are a match or non-match. The bars supporting a match are a
surprise since the random forest predicted a non-match.

Figure 6: These plots were created from the data used to fit the random forest model for each of the nine mode feaures.

Diagnostic Tools for LIME

Due to the contradictory results from simulation methods included in the LIME package, we created two new simulation methods. One uses a regression tree fit to the random forest probability, and the other uses a classification tree applied to the indicator variable of whether or
To compare the simulation methods, we developed several diagnostic plots.
After we applied LIME, we computed a mean squared error (MSE) as
$\frac{\sum_{i}\left(\text { random forest prediction }{ }_{i}-\text { LIME simple model prediction }{ }_{i}\right)^{2}}{\text { number of comparisons }}$
and the average of the R^{2} values from the simple models fit by LIME, and we compared these across simulation methods.
For each of the comparisons and bin based simulation methods, we also recorded and compared the most important feature selected by LIME.

Figure 7: These plots show the MSEs and average R^{2} values for the simulation methods used when LIME was pplied. The tree based methods typicaly perform best based on the lowest MSEs, but all methods have

gure 8: The heatmap shows the most important feat in the bullet comparisons and for each of the bin based simulation methods. The cases are separated by the matches and non-matches. The vertical stripes, which can be clearly seen with the equal bins, suggest a

Conclusions and Future Work

LIME produced explanations that contradicted the random forest model.

 R^{2} values were very low for all simulation methods, and there is no obvious best simulation method based on the MSE and R^{2} values.The most important feature chosen by LIME appears to be dependent on the simulation method. We think that the linear regression model used by LIME is too simplistic to capture the trends in the random forest, and we think using a tree for the simple model may produce better results. We would like to apply LIME to other random forest models to see if similar trends occur.

References

