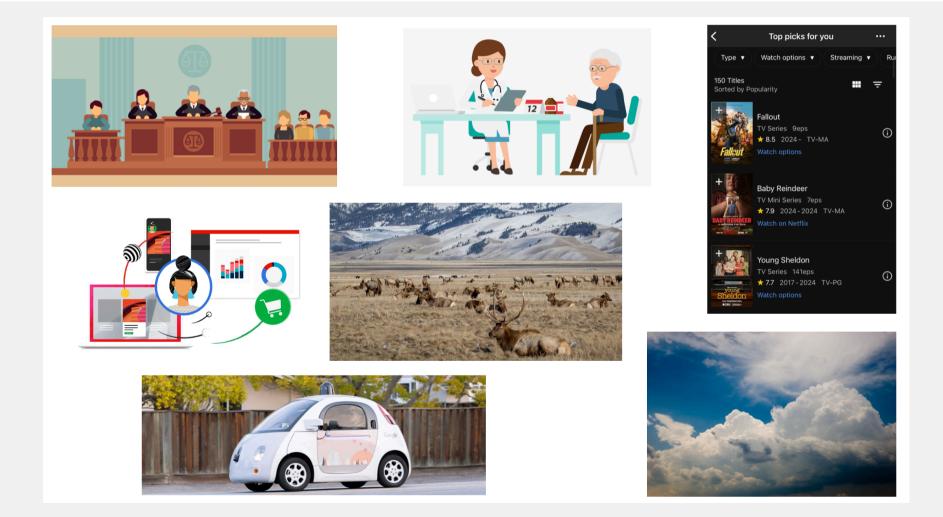
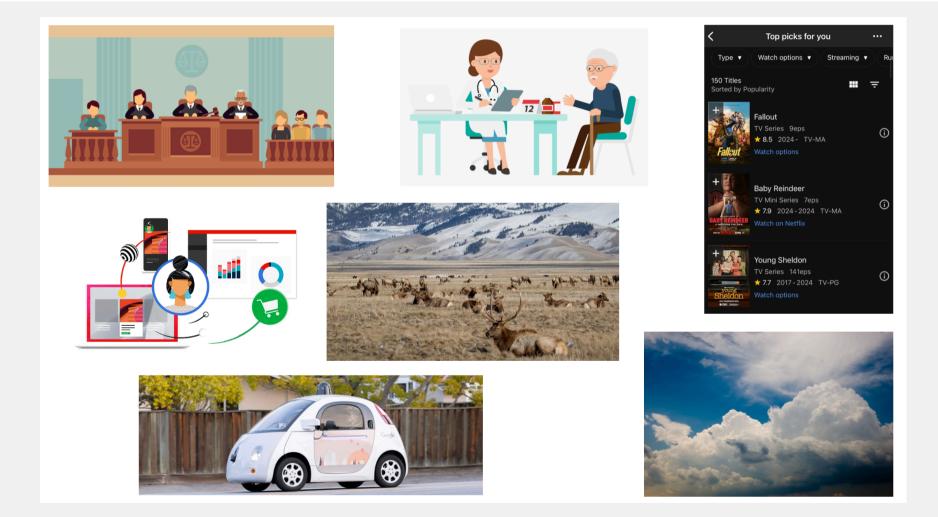


A Framework for Evaluating the Maturity Level of Machine Learning Explanations

Katherine Goode Erin Acquesta (PI), Candace Diaz, Raga Krishnakumar, Ernesto Prudencio August 6, 2024


SAND2024-09822C

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.



When would you be willing to use machine learning for decision making?

What "boxes" need to be "checked" to use ML when consequences increase?

What "boxes" need to be "checked" to use ML when consequences increase?

Sandia's five major program portfolios

Sandia National Labs is a *federally funded research and development center (FFRDC)* managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc.

FFRDCs are long-term strategic partners to the federal government...

operating in the public interest with objectivity and independence and maintaining core competencies in missions of national significance.

4

Overview

Motivation and Background

CompSim Models, Maturity Levels, and SciML

Proposed Framework

Maturity Levels for Explainability/Interpretability with SciML

Discussion

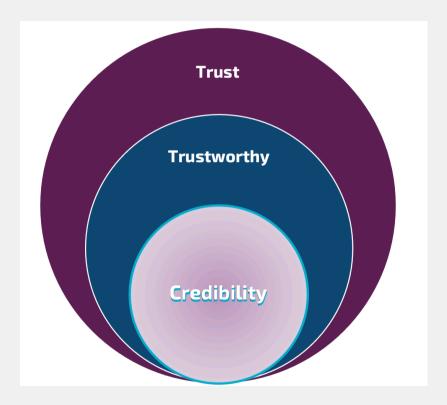
Challenges and Moving Forward

Motivation and Background

CompSim Models, Maturity Levels, and SciM

Machine Learning at Sandia

The National Nuclear Security Administration (NNSA) Labs **emphasize trusted artificial intelligence (AI) as a necessity** for it to meet national security mission delivery.


Motivation

- Machine learning (ML) holds great potential for mission critical applications
- Evaluating the credibility of current techniques poses challenges that may hinder widespread acceptance and use
- Sandia's mission needs set us apart from industry and academia
 - High-consequence applications, domain expertise plays a critical role in model construction, etc.

The NNSA Labs must strike a balance between leveraging the advantages of ML while ensuring its responsible use for national security purposes.

ML Trust/Trustworthy/Credibility at Sandia

Trust Defines the state of the decision maker

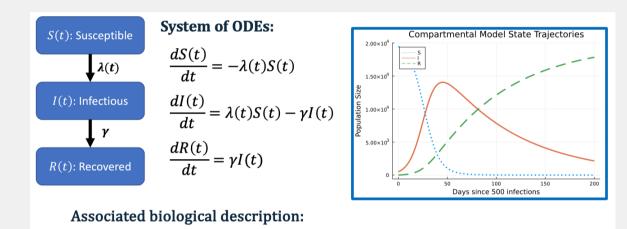
• Decision maker integrates interpretability/ explainability into their decision making process

Trustworthy Defines the state of the model

• Trustworthy interpretability/explainability is for the decision makers

Credibility Identifies the technical basis of the model

• Credibility of interpretability/explainability approach is for the model developer

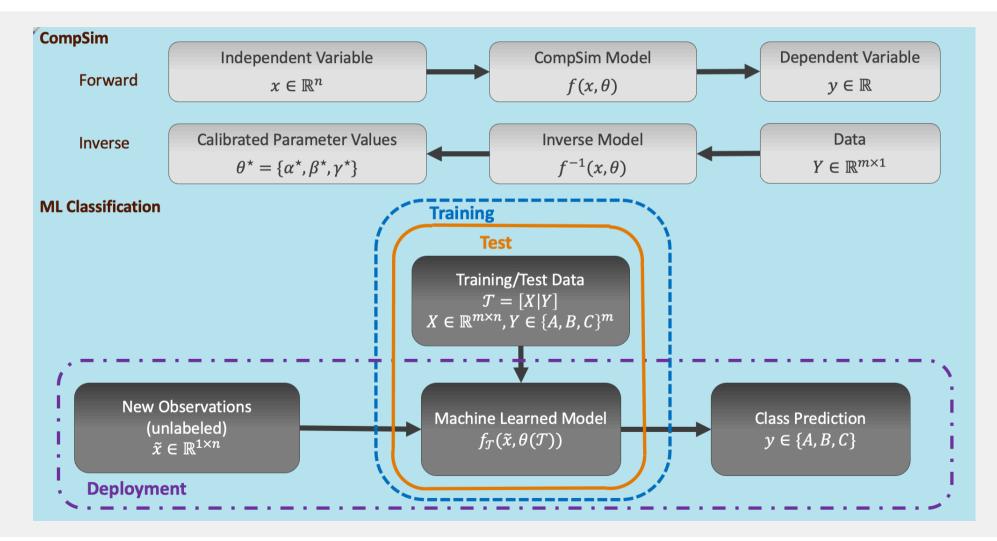

CREDIBILITY LEADS TO TRUSTWORTHY MODELS -- TRUSTWORTHY MODELS MAY ESTABLISH TRUST

What is CompSim?

Computational Simulation

AKA CompSim; Modeling and Simulation; ModSim; M&S

- "Computational modeling is the use of computers to simulate and study complex systems using mathematics, physics and computer science." - NIH
- CompSim focuses on creating mathematical models based on first principals
- Contrast to models that start with data and then aim to approximate scientific mechanisms


$$\lambda(t) = \beta \frac{I(t)}{(S(t)+I(t)+R(t))}$$
: force of infection function

 β : rate of Infection

 $\left(\frac{1}{\nu}\right)$: mean duration of infectiousness

Epidemiology: Classic compartmental model

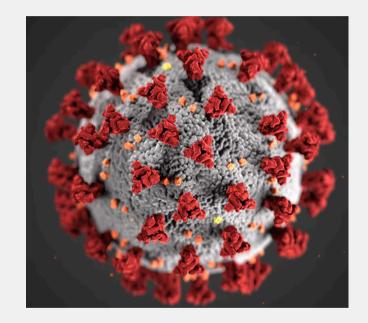
CompSim vs. Machine Learning

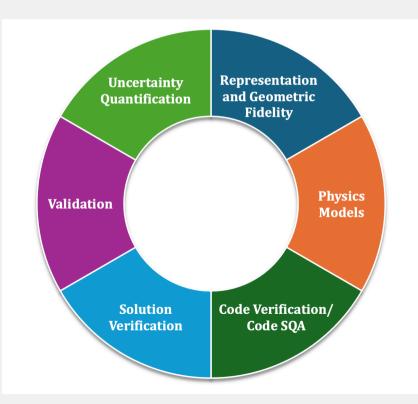
Role of CompSim at Sandia

CompSim is used in various high-consequence mission spaces at Sandia

EXAMPLE

- March 2020: WHO declares COVID-19 a pandemic CDC website
- During early stages of an outbreak:
 - Bayesian methods provide insight given limited data
 - CompSim models were used for project modeling to inform decision makers on what may happen given a particular policy change
- The Department of Energy (DOE) stood up the National Virtual Biotechnology Laboratory that pulled together experts across all 17 DOE labs to provide critical insight during a national crisis




Image source: CDC website

CompSim Credibility

The CompSim **credibility process** (1) assembles and documents **evidence** (2) to ascertain and communicate the **believability of predictions** produced from computational simulations.

Predictive Capability Maturity Model (PCMM)

- Introduced in 2007 as "a model that can be used to assess the level of maturity of computational modeling and simulation"
- Addresses six elements that contribute to CompSim

PCMM Table

	Low Consequence				High Consequence	
Six CompSim	MATURITY	Maturity Level 0 Low Consequence, Minimal M&S Impact, e.g. Scoping Studies	Maturity Level 1 Moderate Consequence, Some M&S Impact, e.g. Design Support	Maturity Level 2 High-Consequence, High M&S Impact, e.g. Qualification Support	Maturity Level 3 High-Consequence, Decision-Making Based on M&S, e.g. Qualification or Certification	
Elements	Representation and Geometric Fidelity What features are neglected because of simplifications or stylizations?	 Judgment only Little or no representational or geometric fidelity for the system and BCs 	 Significant simplification or stylization of the system and BCs Geometry or representation of major components is defined 	 Limited simplification or stylization of major components and BCs Geometry or representation is well defined for major components and some minor components Some peer review conducted 	 Essentially no simplification or stylization of components in the system and BCs Geometry or representation of all components is at the detail of "as built", e.g., gaps, material interfaces, fasteners Independent peer review conducted 	
	Physics and Material Model Fidelity How fundamental are the physics and material models and what is the level of model calibration?	 Judgment only Model forms are either unknown or fully empirical Few, if any, physics- informed models No coupling of models 	 Some models are physics based and are calibrated using data from related systems Minimal or ad hoc coupling of models 	 Physics-based models for all important processes Significant calibration needed using separate effects tests (SETs) and integral effects tests (IETs) One-way coupling of models Some peer review conducted 	All models are physics based Minimal need for calibration using SETs and IETs Sound physical basis for extrapolation and coupling of models Full, two-way coupling of models Independent peer review conducted	
	Code Verification Are algorithm deficiencies, software errors, and poor SQE practices corrupting the simulation results?	 Judgment only Minimal testing of any software elements Little or no SQE procedures specified or followed 	Code is managed by SQE procedures Unit and regression testing conducted Some comparisons made with benchmarks	 Some algorithms are tested to determine the observed order of numerical convergence Some features & capabilities (F&C) are tested with benchmark solutions Some peer review conducted 	 All important algorithms are tested to determine the observed order of numerical convergence All important F&Cs are tested with rigorous benchmark solutions Independent peer review conducted 	
	Solution Verification Are numerical solution errors and human procedural errors corrupting the simulation results?	 Judgment only Numerical errors have an unknown or large effect on simulation results 	 Numerical effects on relevant SRQs are qualitatively estimated Input/output (I/O) verified only by the analysts 	Numerical effects are quantitatively estimated to be small on some SRQs I/O independently verified Some peer review conducted	Numerical effects are determined to be small on all important SRQs Important simulations are independently reproduced Independent peer review conducted	
	Model Validation How carefully is the accuracy of the simulation and experimental results assessed at various tiers in a validation hierarchy?	 Judgment only Few, if any, comparisons with measurements from similar systems or applications 	 Quantitative assessment of accuracy of SRQs not directly relevant to the application of interest Large or unknown exper- imental uncertainties 	Quantitative assessment of predictive accuracy for some key SRQs from IETs and SETs Experimental uncertainties are well characterized for most SETs, but poorly known for IETs Some peer review conducted	Quantitative assessment of predictive accuracy for all important SRQs from IETs and SETs at conditions/geometries directly relevant to the application Experimental uncertainties are well characterized for all IETs and SETs Independent peer review conducted	
ļ	Uncertainty Quantification and Sensitivity Analysis How thoroughly are uncertainties and sensitivities characterized and propagated?	Judgment only Only deterministic analyses are conducted Uncertainties and sensitivities are not addressed	Aleatory and epistemic (A&E) uncertainties propagated, but without distinction Informal sensitivity studies conducted Many strong UO/SA assumptions made	A&E uncertainties segregated, propagated and identified in SRQs Quantitative sensitivity analyses conducted for most parameters Numerical propagation errors are estimated and their effect known Some strong assumptions made Some peer review conducted	A&E uncertainties comprehensively treated and properly interpreted Comprehensive sensitivity analyses conducted for parameters and models Numerical propagation errors are demonstrated to be small No significant UQ/SA assumptions made Independent peer review conducted	

PCMM asks...

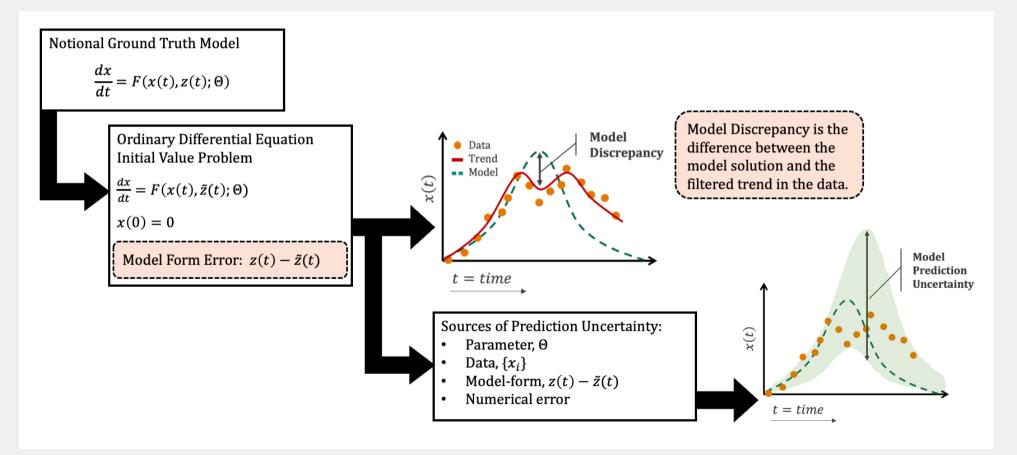
- Have you done something that meets *this requirement*?
- NOT: Have you implemented *this specific method* for in order to meet *this requirement*?

Maturity levels are determined by...

- Consequence level of an application
- Degree that a model is the only source of information to base a decision on

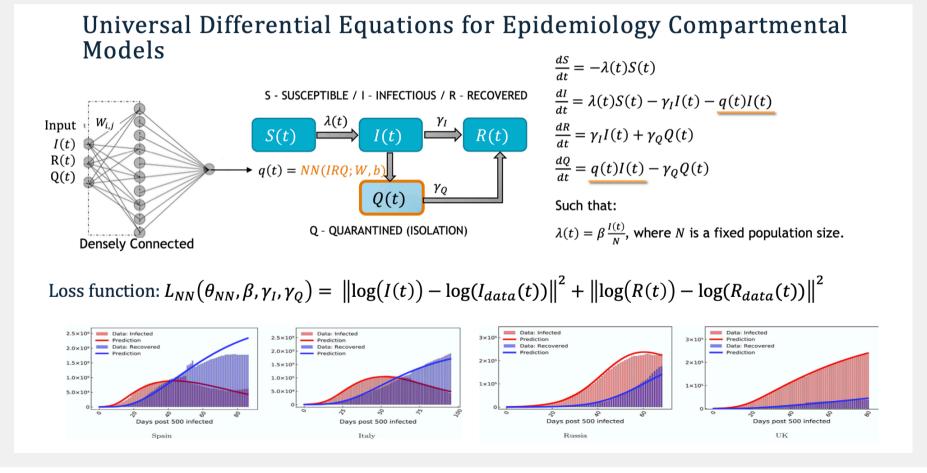
What is Scientific Machine Learning (SciML)?

Intersection of scientific computing and machine learning


Leverages machine learning algorithms and tools used in lieu of, complementary to, or as surrogates for science and engineering computational simulation models

Operator Learning Physics-Informed Neural Networks (PINN)	ML System Identification Neural Ordinary Differential Equations (NODE)	Model-Form Error Corrections Universal Differential Equations (UDE)	
Data-driven solutions to Partial Differential Equations (PDEs):	Simulating unknown dynamics for a full system of ODEs:	Model-form error:	
$u_t + \mathcal{R}[u] = 0,$ $u(x,t) = NN(t; W,b)$	$\frac{du}{dt} = NN(u(t); W, b)$	$\frac{du}{dt} = \mathcal{F}(u(t); NN(u(t); W, b))$	

Examples of SciML

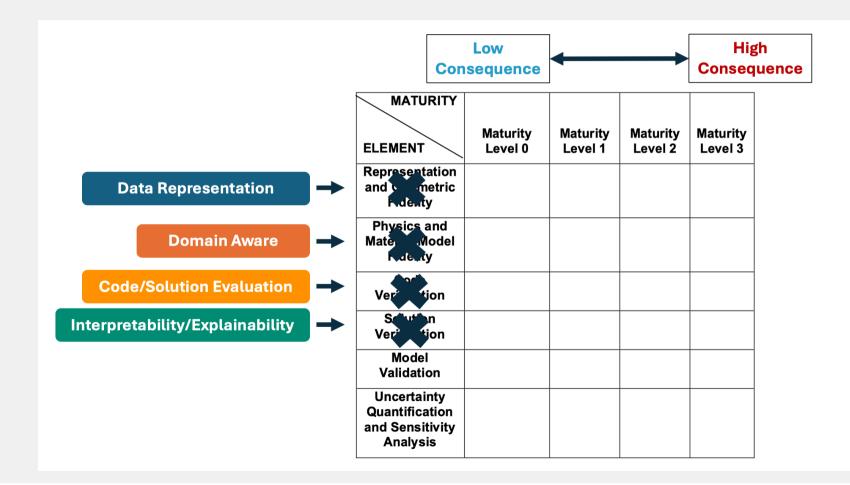

Role of SciML at Sandia

Model Form Error and Model Discrepancy

Role of SciML at Sandia

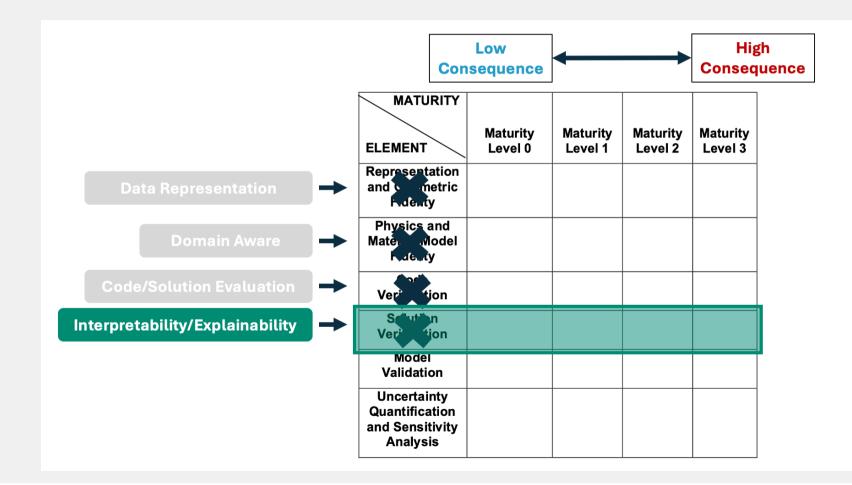
Model Form Error Corrections via Neural Networks

16


Adapting PCMM for SciML

Our Objective Adapt the PCMM table to provide a tool for establishing credibility of a SciML model

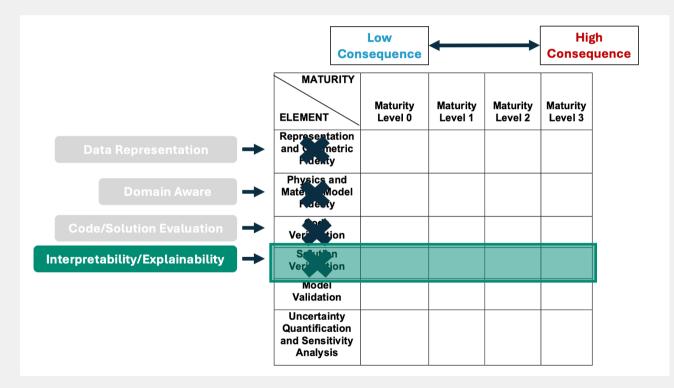
Con	Low sequence			Hig Conseq	
MATURITY	Maturity Level 0	Maturity Level 1	Maturity Level 2	Maturity Level 3	
Representation and Geometric Fidelity					
Physics and Material Model Fidelity					
Code Verification					
Solution Verification					
Model Validation					
Uncertainty Quantification and Sensitivity Analysis					


Adapting PCMM for SciML

Our Objective Adapt the PCMM table to provide a tool for establishing credibility of a SciML model

Adapting PCMM for SciML

Our Objective Adapt the PCMM table to provide a tool for establishing credibility of a SciML model


19

Proposed Framework

Maturity Levels for Explainability/Interpretability with SciM

Our Objective

Big Picture Adapt the PCMM table to provide a tool for establishing credibility of a SciML model

Specific to Interpretability/Explainability

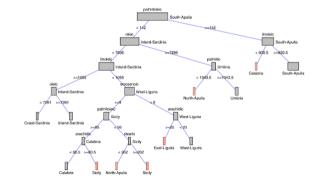
• ML community has prioritized explainability to develop trust in ML

The maturity of these methods need to also be evaluated

2

4.1

• We aim to develop criteria needed to establish maturity levels for interpretability associated with or explainability applied to a SciML model

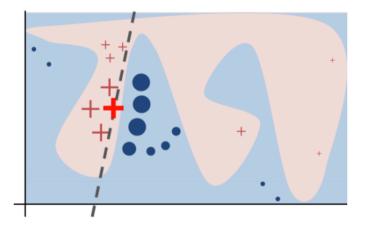

Explainability/Interpretability

How we are making a distinction between these terms...

Interpretability

Ability to directly use model to understand how algorithm makes decisions

$$\hat{y}=\hat{eta}_0+\hat{eta}_1x_1+\dots+\hat{eta}_px_p$$



Using interpretable model or adjusting black box models to contain interpretable parameters

Figure from Urbanek (2008)

Explainability

Ability to indirectly use model to understand how algorithm makes decisions

Often post-hoc techniques

Figure from LIME paper (Ribeiro 2016)

Proposed Maturity Levels (current state)

MATURITY Model Impact Consequence Level	LEVEL 0 Minimal Low	LEVEL 1 Some Moderate	LEVEL 2 High High	LEVEL 3 Decision-Making High
Elements:				
Interpretable or black-box model	If using a non-interpretable model, not required to answer the question of why a more complex model is better?	If using a non-interpretable model, must partially answer the question of why a more complex model is better?	If using a non-interpretable model, must answer the question of why a more complex model is better?	If using a non-interpretable model, must rigorously answer the question of why a more complex model is better?
Interpretations / Explanations	No interpretations / explainability applied	Some interpretations / explainability applied (local and/or global)	Interpretations / explainability applied and assessed (local and global)	Interpretations / explainability comprehensively applied and assessed (local and global)
Level of review	Judgment only	Some informal internal peer review conducted (within team or informally outside of team within institution)	Formal internal independent peer review conducted (internal to institution; outside of team)	External independent peer review conducted (external to institution; outside of team)
Assumptions	Relying on assumptions that model is capturing/using scientifically reasonable relationships in the data	Many strong assumptions made that model is capturing/using scientifically reasonable relationships in the data	Some assumptions made that model is capturing/using scientifically reasonable relationships in the data	No significant assumptions made that model is capturing/using scientifically reasonable relationships in the data

Proposed Maturity Levels: Interpretable or Black-Box

MATURITY Model Impact Consequence Level	LEVEL 0 Minimal Low	LEVEL 1 Some Moderate	LEVEL 2 High High	LEVEL 3 Decision-Making High
Interpretable or black-box model	If using a non-interpretable model, not required to answer the question of why a more complex model is better?	If using a non-interpretable model, must partially answer the question of why a more complex model is better?	If using a non-interpretable model, must answer the question of why a more complex model is better?	If using a non-interpretable model, must rigorously answer the question of why a more complex model is better?

How rigorously must the following question be answered... If using a non-interpretable model, why is a more complex model better?

Consideration Do not want to force use of "clear-box" model, but require reasoning for use of "black-box" model

Proposed Maturity Levels: Interpretations / Explanations

MATURITY Model Impact Consequence Level	LEVEL 0 Minimal Low	LEVEL 1 Some Moderate	LEVEL 2 High High	LEVEL 3 Decision-Making High
Interpretations / Explanations	No interpretations / explainability applied	Some interpretations / explainability applied (local and/or global)	Interpretations / explainability applied and assessed (local and global)	Interpretations / explainability comprehensively applied and assessed (local and global)

How rigorously has the model been interpreted or explanations have been applied AND assessed?

Considerations

- Applied global and local explanations
- Explanations are approximations of a model: Important to assess whether approximations are credible

Proposed Maturity Levels: Level of Review

MATURITY Model Impact Consequence Level	LEVEL 0 Minimal Low	LEVEL 1 Some Moderate	LEVEL 2 High High	LEVEL 3 Decision-Making High
Level of review	Judgment only	Some informal internal peer review conducted (within team or informally outside of team within institution)	Formal internal independent peer review conducted (internal to institution; outside of team)	External independent peer review conducted (external to institution; outside of team)

How rigorously have model interpretations/explanations been peer-reviewed?

Considerations Heavily influenced from requirements in PCMM table

Proposed Maturity Levels: Assumptions

MATURITY Model Impact Consequence Level	LEVEL 0 Minimal Low	LEVEL 1 Some Moderate	LEVEL 2 High High	LEVEL 3 Decision-Making High
Assumptions	Relying on assumptions that model is capturing/using scientifically reasonable relationships in the data	Many strong assumptions made that model is capturing/using scientifically reasonable relationships in the data	Some assumptions made that model is capturing/using scientifically reasonable relationships in the data	No significant assumptions made that model is capturing/using scientifically reasonable relationships in the data

How thoroughly have interpretations/explanations been used to diagnose how well a model is using scientifically reasonable relationships in data?

Considerations Relies on the soundness of explainability techniques used

Discussion

Challenges and Moving Forward

NAMES OF TAXABLE

Challenges

• Grey area between "interpretability" and "explainability"

• Rapidly evolving area of machine learning and explainability

- Currently, not a major emphasis on the assessment of explanations
 - e.g., diagnostic tools for explainability methods

• How to best account for the fact that there are no agreed upon "standards" for explainability yet?

Going Forward...

Continuing to develop the requirements based on...

- feedback
- additional research into interpretability/explainability
 - definitions, evaluation techniques, new methods, etc.
- exemplars

Questions to consider...

- How can lessons learned from using "statistical models" in high consequence decision spaces be used to inform how "machine learning" is used in high consequence decision spaces?
- Can this (initial) framework for SciML be applicable for more general ML? What would need to be adjusted?

Thank you.

Questions? Thoughts?

Katherine Goode

kjgoode@sandia.gov

31

h

goodekat.github.io