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Introduction

Balancing AI Pros/Cons The National
Nuclear Security Administration (NNSA) Labs
emphasize trusted artificial intelligence (AI) as
a necessity to meet the national security mission
delivery.

▶ Machine learning (ML) holds great potential
for mission critical applications.

▶ Evaluating the credibility of current
techniques poses challenges that may hinder
widespread acceptance and use.

▶ Sandia’s mission needs set us apart from
industry and academia (e.g.,
high-consequence applications, domain
expertise plays a critical role in model
construction, etc.).

The NNSA Labs must strike a balance
between leveraging the advantages of ML
while ensuring its responsible use for
national security purposes.

Figure 1: Sandia’s five major program portfolios.

Defining Terms

Trust defines the state of the decision maker.

▶ Example: Decision maker integrates
explainability into their decisions.

Trustworthy defines the state of the model.

▶ Example: Red team tested for security and
bias is known and accounted for.

Credibility defines the technical basis of the
model.

▶ Example: Verification, validation, and UQ.

Figure 2: Credibility leads to trustworthy models; Trustworthy models may
establish trust.

Computational Simulation

▶ “Computational modeling is the use of computers to simulate and study
complex systems using mathematics, physics and computer science”
(NIH 2020).

▶ AKA CompSim; Modeling and Simulation; ModSim; M&S.

▶ CompSim focuses on creating mathematical models based on first
principals; Contrast to models that start with data and then aim to
approximate scientific mechanisms.

Figure 3: Epidemiology classic compartmental model.

CompSim is used in high-consequence mission spaces at Sandia.

▶ Example: During early stages of COVID-19 pandemic, CompSim models
were used for projection modeling to inform decision makers on what
may happen given a particular policy change.

Scientific Machine Learning (SciML)

▶ We define SciML as the intersection of scientific computing and
machine learning.

▶ SciML leverages machine learning algorithms and tools used in lieu of,
complementary to, or as surrogates for science and engineering
computational simulation models.

Figure 4: Examples of SciML.

Figure 5: Model form error corrections via neural networks (Dandekar 2020).

Adapting PCMM for SciML: Focus on Interpretability/Explainability
Predictive Capability Maturity Model (PCMM) The CompSim
credibility process (1) assembles and documents evidence (2) to ascertain and
communicate the believability of predictions produced from computational
simulations.
▶ PCMM introduced in 2007 as ”a model that can be used to assess the

level of maturity of computational modeling and simulation” (Oberkampf
2007).

▶ PCMM asks:

▶ Have you done something that meets this requirement?
▶ NOT: Have you implemented this specific method for in order to meet

this requirement?

Our Objective Adapt the PCMM table to provide a tool for establishing
credibility of a SciML model. Here, we focus on the criteria needed to establish
maturity levels for interpretability/explainability associated with a SciML
model.

Figure 6: Interpretability versus explainability.

Figure 7: PCMM table.

Figure 8: Adapting PCMM for SciML.

Proposed Explainability/Interpretability Maturity Levels (current state)

Considerations
▶ Do not want to force use of

”clear-box” model, but
require reasoning for use of
”black-box” model.

▶ Explanations are
approximations of a model;
Important to assess if
approximations are credible.

▶ Assumptions rely on the
soundness of explainability
technique.

Going Forward

▶ Slowly growing emphasis in the
literature on methods for assessing
explanation credibility.

▶ Interested in focusing on
development of novel methods for
assessing the element of
explainability. Figure 9: Consider new ways to assess fidelity of explanations.
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