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Overview

Motivation

▶ Echo-State Networks (ESNs) are being more
commonly used to model climate data due to their
ability to capture non-linear relationships in
spatio-temporal data [1-4].

▶ However, ESNs lack interpretability due to
algorithmic complexity (i.e., “black box” models).

▶ There has been recent interest in using
explainability approaches for climate applications
to provide insight into black-box machine learning
models [5-6].

▶ We present work that contributes to the emerging
field by exploring the application of feature
importance explainability techniques for ESNs in
two climate applications.

Echo State Networks ESNs are nonlinear machine
learning models for temporal data. A single layer ESN
is composed of two stages:

ESNs are computationally efficient since the only es-
timated parameters are those in V. The elements of
W and U are randomly sampled to create sparse ma-
trices. All other parameters are tunable. See [7-8].

Discussion on Evaluating Explainability

▶ While both applications here demonstrate the use
of explainability to gain insight into ESNs, work
has identified the need for more technical
evaluations of explainability approaches (includes
work from the climate space [9]).

▶ Future work is needed to identify how to
appropriately use and evaluate explainability
methods with spatio-temporal data.
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Characterizing Pathways

Collaborators: Daniel Ries and Kellie McClernon

This work aimed to develop algorithms to characterize (i.e., quantify) relationships between climate
variables associated with the 1991 volcanic eruption of Mount Pinatubo. The eruption serves as a proxy
for a stratospheric aerosol injection. The approach taken developed spatio-temporal feature importance
for ESNs to quantify the importance of input variables over time.

Figure 1: Modeling Process. This example considers the relationship between aerosol optical depth (AOD) and lagged stratospheric temperature (50 mb)
on predicting stratospheric temperatures one month ahead. The analysis used Modern-Era Retrospective Analysis for Research and Applications, Version 2
(MERRA-2) monthly values from 1980 to 1995 within -86 to 86 degrees latitude. The principal components were computed on the normalized anomalies
of the variables. The first five principle components from both variables were used for modeling.

Figure 2: Model Performance. An ensemble of 25 ESNs was fit to account for
random variability (after hyper-parameter tuning). This figure shows results
from a temporal cross validation analysis.

Figure 3: Spatio-Temporal Zeroed Feature Importance (stZFI).
The goal of stZFI is to quantify the effect of input variable k
over a block of times (t − b, ..., t − 1) on forecasts at time t.
stZFI is computed as the difference between root mean squared
erros (RMSEs) from “zeroed” and observed spatial predictions
at time t: RMSEzeroed ,t−RMSEobs,t. Large feature importance
values indicate ”zeroed” inputs lead to a decrease in model
performance, which suggests those inputs are important for
prediction. The method is inspired by work in [10].

Figure 4: Feature Importance Results. These stZFI values are computed for AOD and stratospheric temperature using a block size of 6 months. The
RMSEs used to compute the stZFI values are weighted by cos latitude. The grey lines represent the variability across the 25 ESNs, and the black line is the
mean. Spikes in feature importance for AOD are seen after Pinatubo (1991) and the eruption of El Chichón (1982). A large spike in feature importance
is seen in temperature after El Chichón.
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Subseasonal Extreme Temperature Forecasting

Collaborators: Thoman Ehrmann, Maike Holthuijzen, Meredith Brown, Jacob Johnson

The goal of this project is to use machine learning models to predict large-scale temperature extremes over
the continental US on subseasonal time scales (2-8 weeks). Traditional physics-based weather models
are too chaotic to predict extreme events beyond 15 days in advance. Improved forecasts may help with
preparation for extreme temperature events. We are currently applied random forests, quantile random
forests, and ESNs for prediction. We are employing feature importance to identify important variables
for prediction (aggregated over time).

Figure 5: Modeling Process. Data were sourced from the MERRA-2. We are working with weekly averages from 1980 through 2022. Our target variable
is 2m temperature averaged within 5 regions of the continental US (CONUS). Input variables were averaged over 9 global regions for 8 different fields:
surface temperate, sea-level pressure, geopotential height at 850 hPa, 500 hPa, and 200 hPa, and air temperature at 850 hPa, 500 hPa, and 200 hPa.

Figure 6: Preliminary Model Performance. A key finding is that the ESN and random forest
models perform similarly on all test data, but the random forest outperforms the ESN on
the extreme temperatures (i.e., temperatures more than 1 standard deviation away from the
mean).

Figure 7: Permutation Feature Importance (PFI). We
apply PFI [11] to identify variables that are important
for forecasts (accounting for all times). PFI is computed
as the difference between the RMSE when one input ma-
trix column is permuted and the RMSE from observed
predictions: RMSEperm − RMSEobs . Ongoing work is
exploring grouping of variables to account for correlated
input variables.

Figure 8: Preliminary Feature Importance Results. (Left) Variable importances ranked by average importance across target regions for the top 25 variables.
Noticeably, all top 25 variables for the ESN are sea level pressure variables unlike with the random forest. (Right) Proportion of the top 25 variables that
are associated with an input region (top) and principle component/statistic (bottom). The proportions are computed within a model type, input climate
variable, and forecast horizon. Note that the ESN has high proportions of arctic and pacific regions in the top 25 variables. Further, the ESN only has
PCs 1-11 in the top 25 variables .
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