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The National Nuclear Security Administration (NNSA) 
Labs emphasize trusted artificial intelligence (AI) as a 
necessity to meet national security mission delivery.
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Sandia’s five major mission portfolios

The National Nuclear Security Administration (NNSA) 
Labs emphasize trusted artificial intelligence (AI) as a 
necessity to meet national security mission delivery.
• Recognize the value AI could provide to achieve 

mission goals
• Evaluating the credibility of current techniques poses 

challenges that may hinder widespread acceptance 
and use

• Sandia’s mission needs set us apart from industry and 
academia due to reasons such as high-consequence 
applications
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and use

• Sandia’s mission needs set us apart from industry and 
academia due to reasons such as high-consequence 
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The NNSA Labs must strike a balance between leveraging the advantages of ML while ensuring 
its responsible use for national security purposes.

Sandia’s five major mission portfolios
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An example of a distinction in trust AI terminology at 
Sandia.

Trust defines the state of the decision maker.

Trustworthy defines the state of the model.

Credibility defines the technical basis of the 
model.
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Trust defines the state of the decision maker.

• Human studies investigating how 
transparency and interactivity affect users’ 
trust and performance with an algorithm

Trustworthy defines the state of the model.

Credibility defines the technical basis of the 
model.
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Trustworthy defines the state of the model.

• Projects considering counter-adversarial ML
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Trust defines the state of the decision maker.

• Human studies investigating how 
transparency and interactivity affect users’ 
trust and performance with an algorithm

Trustworthy defines the state of the model.

• Projects considering counter-adversarial ML

Credibility defines the technical basis of the 
model.

• Investigations into uncertainty quantification 
methods for ML and technical evaluations of 
explainability methods
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One area emphasized at Sandia is AI model transparency, which includes model interpretability and 
explainability
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One area emphasized at Sandia is AI model transparency, which includes model interpretability and 
explainability

Interpretability
Ability to directly use model to understand 
how algorithm makes decisions

Using interpretable model or adjusting black box 
models to contain interpretable parameters
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Interpretability
Ability to directly use model to understand 
how algorithm makes decisions

Using interpretable model or adjusting black box 
models to contain interpretable parameters

Often post-hoc techniques 
Figure from LIME paper (Ribeiro 2016) 

Explainability
Ability to indirectly use model to understand how 
algorithm makes decisions

One area emphasized at Sandia is AI model transparency, which includes model interpretability and 
explainability

https://arxiv.org/abs/1602.04938
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MOTIVATION
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MOTIVATION: RANDOM FORESTS

• Ensemble of decision/regression trees
• Introduces randomness in two places:

▪ Each tree trained on a bootstrap sample 
of training data

▪ Each split considers a random subset of 
features

• Advantages over a single tree:
▪ Helps prevent overfitting
▪ More robust to small variations in data
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Random forests have become a common model used/considered in applications across 
Sandia



MOTIVATION: EXAMPLE DATA
Palmer Penguins
• Data: 342 penguins from Palmer Archipelago in Antarctica
• Goal: Predict species (Adelie, chinstrap, or gentoo) 

• Given four body measurements (bill length, bill depth, flipper length, body mass)
• Model: Random forests with 50 trees (max depth of 4 + full depth)
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MOTIVATION: INTERPRETING TREE MODELS
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• Single tree Typically considered interpretable 



MOTIVATION: INTERPRETING TREE MODELS
• Single tree Typically considered interpretable 
• Ensemble of trees Naturally becomes more difficult to interpret due to cognitive load
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Various approaches have been developed for gaining insight into how random forests use data for 
predictions
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Permutation Feature Importance (Breiman 2001) 
Permute an input variable and quantify change in model performance

Breiman, L. Random Forests. Machine Learning 45, 5–32 (2001). https://doi.org/10.1023/A:1010933404324 

Various approaches have been developed for gaining insight into how random forests use data for 
predictions

https://doi.org/10.1023/A:1010933404324
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Various approaches have been developed for gaining insight into how random forests use data for 
predictions

Trace Plots (Urbanek 2010) 
Designed to compare
1. variables used for splitting, 
2. location of split points, and
3. hierarchical structure

Urbanek, S. (2008). Visualizing Trees and 
Forests. In: Handbook of Data Visualization. 
Springer Handbooks Comp.Statistics. Springer, 
Berlin, Heidelberg. https://doi.org/
10.1007/978-3-540-33037-0_11 

https://doi.org/10.1007/978-3-540-33037-0_11
https://doi.org/10.1007/978-3-540-33037-0_11
https://doi.org/10.1007/978-3-540-33037-0_11
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Various approaches have been developed for gaining insight into how random forests use data for 
predictions
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Trace Plots (Urbanek 2010) 
Designed to compare
1. variables used for splitting, 
2. location of split points, and
3. hierarchical structure

Urbanek, S. (2008). Visualizing Trees and 
Forests. In: Handbook of Data Visualization. 
Springer Handbooks Comp.Statistics. Springer, 
Berlin, Heidelberg. https://doi.org/
10.1007/978-3-540-33037-0_11 

https://doi.org/10.1007/978-3-540-33037-0_11
https://doi.org/10.1007/978-3-540-33037-0_11
https://doi.org/10.1007/978-3-540-33037-0_11


Representative tree
• Identify a tree that is representative of the forest
• One approach: Find tree that has smallest average distance to all other trees

Clusters of trees
• Compute distances between trees
• Identify clusters via MDS, K-means, etc.
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PREVIOUS WORK: EXPLAINING RANDOM FORESTS
Various approaches have been developed for gaining insight into how random forests use data for 
predictions

Banerjee, M., Y. Ding, and A. Noone (2012). "Identifying representative trees from ensembles". In: Statistics in Medicine 31.15, pp. 1601-1616. ISSN: 1097-0258. 10.1002/sim.4492.
Chipman, H. A., E. I. George, and R. E. McCulloch (1998). "Making sense of a forest of trees". In: Proceedings of the 30th Symposium on the Interface. , pp. 84-92. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.42.2598.
Shannon, W.D. and Banks, D. (1999), Combining classification trees using MLE. Statist. Med., 18: 727-740. https://doi.org/10.1002/(SICI)1097-0258(19990330)18:6<727::AID-SIM61>3.0.CO;2-2
Sies, A. and I. V. Mechelen (2020). "C443: a Methodology to See a Forest for the Trees". In: Journal of Classification 37.3, pp. 730-753. ISSN: 0176-4268. https://link.springer.com/article/10.1007/s00357-019-09350-4.
Weinberg, A. I. and M. Last (2019). "Selecting a representative decision tree from an ensemble of decision-tree models for fast big data classification". In: Journal of Big Data 6.1, p. 23. 10.1186/s40537-019-0186-3.

https://doi.org/10.1002/sim.4492
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.42.2598
https://doi.org/10.1002/(SICI)1097-0258(19990330)18:6%3C727::AID-SIM61%3E3.0.CO;2-2
https://link.springer.com/article/10.1007/s00357-019-09350-4
https://doi.org/10.1186/s40537-019-0186-3
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PREVIOUS WORK: REPRESENTATIVE AND CLUSTERING OF TREES



Identifying a representative tree or clusters of trees both require a distance metric
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PREVIOUS WORK: REPRESENTATIVE AND CLUSTERING OF TREES

Banerjee, M., Y. Ding, and A. Noone (2012). "Identifying representative trees from ensembles". In: Statistics in Medicine 31.15, pp. 1601-1616. ISSN: 1097-0258. 10.1002/sim.4492.
Chipman, H. A., E. I. George, and R. E. McCulloch (1998). "Making sense of a forest of trees". In: Proceedings of the 30th Symposium on the Interface. , pp. 84-92. http://citeseerx.ist.psu.edu/viewdoc/summary?
doi=10.1.1.42.2598.

https://doi.org/10.1002/sim.4492
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.42.2598
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.42.2598


Identifying a representative tree or clusters of trees both require a distance metric
Two approaches:
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Identifying a representative tree or clusters of trees both require a distance metric
Two approaches:

38

PREVIOUS WORK: REPRESENTATIVE AND CLUSTERING OF TREES

Banerjee, M., Y. Ding, and A. Noone (2012). "Identifying representative trees from ensembles". In: Statistics in Medicine 31.15, pp. 1601-1616. ISSN: 1097-0258. 10.1002/sim.4492.
Chipman, H. A., E. I. George, and R. E. McCulloch (1998). "Making sense of a forest of trees". In: Proceedings of the 30th Symposium on the Interface. , pp. 84-92. http://citeseerx.ist.psu.edu/viewdoc/summary?
doi=10.1.1.42.2598.

https://doi.org/10.1002/sim.4492
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.42.2598
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.42.2598


Example of random forest tree clusters and corresponding central trees

39

PREVIOUS WORK: REPRESENTATIVE AND CLUSTERING OF TREES

Clusters identified using multidimensional scaling with fit metric and representative trees 
determined by tree with smallest average fit metric distance to all other trees in cluster.
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FORESTR: PROJECT GOALS

FORESTR: Finding, Organizing, Representing, Explaining, Summarizing, and Thinning Random forests

Overview 
• Use graph topology distance metric to identify tree topology patters patterns in forests
• Would like a distance metric for comparing tree topologies that is a proper mathematical distance to allow for 

the computation of summary statistics
• Future work could consider using metric to create ensemble with a reduced number of trees
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FORESTR: TREE DISTANCE METRIC
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Guo, X., Srivastava, A. & Sarkar, S. A Quotient Space Formulation for Generative Statistical Analysis of Graphical Data. J Math Imaging Vis 63, 735–752 (2021). https://doi.org/10.1007/s10851-021-01027-1
Bal, Aditi Basu, et al. "Statistical Shape Analysis of Shape Graphs with Applications to Retinal Blood-Vessel Networks." arXiv preprint arXiv:2211.15514 (2022).

https://doi.org/10.1007/s10851-021-01027-1
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Guo, X., Srivastava, A. & Sarkar, S. A Quotient Space Formulation for Generative Statistical Analysis of Graphical Data. J Math Imaging Vis 63, 735–752 (2021). https://doi.org/10.1007/s10851-021-01027-1
Bal, Aditi Basu, et al. "Statistical Shape Analysis of Shape Graphs with Applications to Retinal Blood-Vessel Networks." arXiv preprint arXiv:2211.15514 (2022).

Adapt graph metric from Guo (2021) to trees, which has nice properties:
Proper mathematical distance, invariant to transformations, registration between graphs, and computes 
topological evolutions between graphs 

https://doi.org/10.1007/s10851-021-01027-1
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A tree in penguin random forest
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Corresponding adjacency matrix

A tree in penguin random forest
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Corresponding adjacency matrix

A tree in penguin random forest
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Accounts for 
nodes

Accounts for 
edges
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All pairwise distances Dendrogram of complete linkage clusters based on 
pairwise distances

Accounts for 
nodes

Accounts for 
edges
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FORESTR: CENTRAL TREE
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FORESTR: CENTRAL TREE
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FORESTR: CENTRAL TREE
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FORESTR: CENTRAL TREE WITHIN CLUSTERS
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Central trees from each cluster
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FORESTR: PRODUCT INSPECTION APPLICATION

s500 data
• Information from a product inspection 

application (Kegelmeyer 2015)
• 20 numeric features associated with 1000 

products identified as good or bad
• Separated into training and testing sets 

with 500 observations in each set

Predict good/bad
• 25 trees
• Maximum depth 5
• Fit using scikit-learn and all other default 

parameters

62

P. Kegelmeyer, T. M. Shead, J. Crussell, K. Rodhouse, D. Robinson, C. Johnson, D. Zage, W. Davis, J. Wendt, T. Cayton J. Doak, R. Colbaugh, K. Glass, B. 
Jones, and J. Shelburg. Counter adversarial data analytics Technical report, Sandia National Labs (SAND2015-3711), 2015.
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All pairwise distances

Dendrogram of complete linkage clusters 
based on pairwise distances
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The number of trees in 
clusters 3 and 4 is much less 
than the other clusters (e.g., 
only 1 tree in cluster 3). 

• Could these be outlier 
trees? 

• How would removing them 
from the model affect 
model performance?



FORESTR: PRODUCT INSPECTION APPLICATION

65

The central trees
help identify differences 
between the clusters: 

• the depths at which leaf 
nodes begin to occur and 

• the number of leaf nodes 
at a depth.

Central trees from each cluster
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FORESTR: FUTURE RESEARCH DIRECTIONS
• Account for additional node attributes

▪ (e.g., split feature) 
• Consider approaches to identify repeating sub-graphs 

▪ (i.e., split patterns that are common among the forest)
• Use distances to reduce ensemble size and consider affect on predictive performance

▪ Build up a model using a central tree or central trees from identified clusters
▪ Trim down a model based on their distance to central tree or cluster central trees
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Technical Report Goode, Katherine Jean and Tucker, James Derek. "FORESTR: Finding, Organizing, Representing, 
Explaining, Summarizing, and Thinning Random forests." Sep. 2024. https://doi.org/10.2172/2472741. 


