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NATIONAL SECURITY IS OUR MISSION

Sandia delivers essential science and technology
to address the nation’s most challenging security issues

We make Sandia a leader in keeping the world safe and secure

We use innovative science and engineering to anticipate
and solve the most challenging national security problems

In 10 years, we will have unleashed high-velocity
engineering to counter global threats
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#5 ADVANCED SCIENCE & TECHNOLOGY
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MACHINE LEARNING AT SANDIA: ABALANCING ACT




MACHINE LEARNING AT SANDIA: ABALANCING ACT

The National Nuclear Security Administration (NNSA)
Labs emphasize trusted artificial intelligence (Al) as a
necessity to meet national security mission delivery.
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MACHINE LEARNING AT SANDIA: ABALANCING ACT

The National Nuclear Security Administration (NNSA)
Labs emphasize trusted artificial intelligence (Al) as a
necessity to meet national security mission delivery.

* Recognize the value Al could provide to achieve
mission goals

 Evaluating the credibility of current techniques poses
challenges that may hinder widespread acceptance
and use

+ Sandia’s mission needs set us apart from industry and
academia due to reasons such as high-consequence
applications
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MACHINE LEARNING AT SANDIA: ABALANCING ACT

The National Nuclear Security Administration (NNSA)
Labs emphasize trusted artificial intelligence (Al) as a povances
necessity to meet national security mission delivery. Technology

* Recognize the value Al could provide to achieve
mission goals

 Evaluating the credibility of current techniques poses

challenges that may hinder widespread acceptance L
omeland
and use Security
+ Sandia’s mission needs set us apart from industry and :
academia due to reasons such as high-consequence / ey
applications oy

Nuclear
Deterrence

Global
Security

Sandia’s five major mission portfolios

The NNSA Labs must strike a balance between leveraging the advantages of ML while ensuring

its responsible use for national security purposes.
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MACHINE LEARNING AT SANDIA: EXAMPLE PROJECTS

Predicting Processing Conditions
of Nuclear Particulates Characterizing Variable Pathways Associated with a Volcanic Eruption
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MACHINE LEARNING AT SANDIA: CONSIDERATIONS FOR TRUSTED Al
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MACHINE LEARNING AT SANDIA: CONSIDERATIONS FOR TRUSTED Al

Trust defines the state of the decision maker.

Trustworthy defines the state of the model.

Credibility defines the technical basis of the
model.

An example of a distinction in trust Al terminology at
Sandia.
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MACHINE LEARNING AT SANDIA: CONSIDERATIONS FOR TRUSTED Al

Trust defines the state of the decision maker.

* Human studies investigating how
transparency and interactivity affect users’
trust and performance with an algorithm

Trustworthy defines the state of the model.

Credibility defines the technical basis of the
model.

Interactivity High

Low

EXPERIMENT

Participants interacted with an Al algorithm with
differing levels of transparency and interactivity.

Four Possible GUIs

SLID is an algorithm which detects seismic arrival times and has
two key parameters: smoothness and window size.
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MACHINE LEARNING AT SANDIA: CONSIDERATIONS FOR TRUSTED Al

Trust defines the state of the decision maker.

* Human studies investigating how
transparency and interactivity affect users’
trust and performance with an algorithm

Trustworthy defines the state of the model.

* Projects considering counter-adversarial ML

Credibility defines the technical basis of the
model.
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MACHINE LEARNING AT SANDIA: CONSIDERATIONS FOR TRUSTED Al

Trust defines the state of the decision maker.

* Human studies investigating how Low High
. T 5 onsequence Consequence
fransparency and interactivity affect users MATU:W . :
tr USt and p erformance With an alg Orithm \ Maturity Maturity | Maturity | Maturity
ELEMENT Level 0 Level 1 Level2 | Level3
Repr tatio'n
Trustworthy defines the state of the model. [ Eommrin |- gl
Physics and
- |
. . . . -> Veuon
* Projects considering counter-adversarial ML 2
Model
Validation
QUnc:_r;air:?y
Credibility defines the technical basis of the " analysis

model.

* Investigations into uncertainty quantification
methods for ML and technical evaluations of
explainability methods

18



MACHINE LEARNING AT SANDIA: ELEMENTS OF TRANSPARENCY

One area emphasized at Sandia is Al model transparency, which includes model interpretability and
explainability
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MACHINE LEARNING AT SANDIA: ELEMENTS OF TRANSPARENCY

One area emphasized at Sandia is Al model transparency, which includes model interpretability and
explainability

Interpretability

Ability to directly use model to understand
how algorithm makes decisions

A

3?:,30"‘/313714'"'4',31;%

Using interpretable model or adjusting black box
models to contain interpretable parameters

20



MACHINE LEARNING AT SANDIA: ELEMENTS OF TRANSPARENCY

One area emphasized at Sandia is Al model transparency, which includes model interpretability and
explainability

Interpretability Explainability
Ability to directly use model to understand Ability to indirectly use model to understand how
how algorithm makes decisions algorithm makes decisions
I
I
B
+ ~
i — B 1+ f 4 B +
=P+ bzt + B,z H @ e +
| @ o®
I
’ L
1
Using interpretable model or adjusting black box Often post-hoc techniques

models to contain interpretable parameters Figure from LIME paper (Ribeiro 2016)
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MOTIVATION
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MOTIVATION: RANDOM FORESTS

Random forests have become a common model used/considered in applications across

Sandia

* Ensemble of decision/regression trees
* Introduces randomness in two places:

= Each tree trained on a bootstrap sample
of training data

= Each split considers a random subset of
features

* Advantages over a single tree:
= Helps prevent overfitting
= More robust to small variations in data

Tree 1 Tree 2 Tree 300

O+0++0 _
300

RF Prediction =

Features:
Outcomes:

@ ©®© O O OO 0 0 0
® = Match
@ = Non-Match
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MOTIVATION: EXAMPLE DATA

Palmer Penguins

- Data: 342 penguins from Palmer Archipelago in Antarctica
- Goal: Predict species (Adelie, chinstrap, or gentoo)

 Given four body measurements (bill length, bill depth, flipper length, body mass)
- Model: Random forests with 50 trees (max depth of 4 + full depth)

1004 Confusion matrix (test data)
Shallow Forest

o
<@
©
&}
@ 075
§ Gentoo+ [0] [0]
= No. penguins
g peng
)
el 0.50 1 40
.® °
@ ot
> % Chinstrap -+ @ @
5 0251 &
g 10
o

0

0.00 1 Adelie- @ @
bill_length bill_depth flipper_length body_mass
Predictor Variables
Ade'elle Cmn'strap Gen'too
Penguin Species Adelie — Chinstrap Gentoo Observed
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MOTIVATION: INTERPRETING TREE MODELS

 Single tree Typically considered interpretable

samples = 153
value = [89, 47, 97]

class = Gentoo

bill_length_mm <= 41.6}

bill_depth_mm <= 14.9 flipper_length_mm <= 205.5
samples = 57 samples = 96
value =[82, 1, 1] value =[7, 46, 96]
class = Adelie class = Gentoo
samples ! bill_depth_mm <= 16.65 body _mass g <= 4100.0 bill_depth_mm <= 17.65
value = [0, 0, 1] samples = 56 samples = 34 samples = 62
class = Gentoo value = [82, 1, 0] value = [6.0, 41.0, 0.0] value = [1, 5, 96]
class = Adelie class = Chinstrap class = Gentoo

[\

samples = 3 samples = 53
value = [2, 1, 0] value = [80, 0, 0]
class = Adelie class = Adelie

samples =5
value = [4, 2, 0]
class = Adelie

samples = 58
value = [0, 0, 96]
class = Gentoo

samples = 4
value =[1, 5, 0]
class = Chinstrap

value = [2, 39, 0]
class = Chinstrap

[ samples = 29

26



MOTIVATION: INTERPRETING TREE MODELS

- Single tree Typically considered interpretable
- Ensemble of trees Naturally becomes more difficult to interpret due to cognitive load

B
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PREVIOUS WORK
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PREVIOUS WORK: EXPLAINING RANDOM FORESTS

Various approaches have been developed for gaining insight into how random forests use data for
predictions
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PREVIOUS WORK: EXPLAINING RANDOM FORESTS

Various approaches have been developed for gaining insight into how random forests use data for
predictions

Permutation Feature Importance (Breiman 2001)
Permute an input variable and quantify change in model performance

Terms: Procedure:
bill_length_mm - e Model: f For variable j € {1,...,p} and repetition
kEe{l,...,K}:

e Data: X with n obs and p variables
1. Create X'j,k by randomly permuting
e Variables: X1, X,..., X}, columns of X,
J

X

flipper_length_mm -

Feature

2. Create Xj,k by replacing X; with X'j’k

bill_depth_mm - e Metric: m computed with X and f (s.t. in X

larger indicates better performance)
3. Compute myj, with X and f

body_mass_g- . . ..
PFI for j: Average change in model performance when j is randomly permuted

o+

0.1 0.2 0.3 1 & 1 & 1 E
Feature Importance Jj=m— K Z Mjk = J Z (m - mj,k) K Z Ik
k=1 k=1 k=1

Breiman, L. Random Forests. Machine Learning 45, 5-32 (2001). https://doi.org/10.1023/A:1010933404324 30
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PREVIOUS WORK: EXPLAINING RANDOM FORESTS

Various approaches have been developed for gaining insight into how random forests use data for
predictions

Tree O

Trace Plots (Urbanek 2010)
Designed to compare

bill_length_mm <= 41.6
samples 153

1. variables used for splitting, / \
2. location of split points, and

bill depth mm <= 14.9 body_mass_g <= 4175.0
| =57 samples = 96
. . 14 I =[82,1,1] value = [7, 46, 96]
3. hierarchical structure / \ / \
oo ] bill_de pth mm< 16 65 bo dy mass_g <= 3975 0 bill_de pth mm< 17 45

%- value | Fil[s 44, 1] I —[2 2, 95]
[}

T2

[}

O

o

bill_length_mm <= 43.15 bill_lel gth mm <= —|body_mass_g <= 4750.0
ples samples samples = 3
value = [1, 37, 0] value = [, 7, 1]V21Ue = [0, value = [2, 2, 0]

| JANANAY

samples = 27 mples =9

—{bill_length_mm <= samples = bill_depth_mm <= 1. amples = <o ples = 1
P v samples = 3 P samples 5 1 o b | o S
’ alue [2 0 0]| alue [0 1 value = [1, 2, 01¥@ alue = [0, 3| Z14,0,1] Ile—[U, 7, 0]|v | [2 0 0] alue = [0, 2, 0]

Urbanek, S. (2008). Visualizing Trees and
Forests. In: Handbook of Data Visualization.
Springer Handbooks Comp.Statistics. Springer, | |
Ber”n, Heide|berg_ https://doi.org/ bill_length_mm flipper_ Iength mm bill depth mm body_mass_g
10.1007/978-3-540-33037-0 11 Spit variable

(ordered by random forest importance from left to right)

samples = 2 samples = 1 samples = 1 samples = 4
value = [0, 2, 0]|value = [1, 0, 0]|value = [0, 0, 1]|value = [4, 0, 0]
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PREVIOUS WORK: EXPLAINING RANDOM FORESTS

Various approaches have been developed for gaining insight into how random forests use data for
predictions

Tree O All Trees

Trace Plots (Urbanek 2010)
Designed to compare

1. variables used for splitting, )
2. location of split points, and 21
3. hierarchical structure 5

Node depth
n»
Node depth

Urbanek, S. (2008). Visualizing Trees and

Forests. In: Handbook of Data Visualization. %

Springer Handbooks Comp.Statistics. Springer, | | | |
Berlin Heidelberg. https: //doi.org / bill_length_mm flipper_length_mm  bill_depth_mm body_mass_g bill_length_mm  flipper_length_mm  bill_depth_mm body_mass_g
’ Split variable ) Split variable .

10.1007/978-3-540-33037-0 11 (ordered by random forest importance from left to right) (ordered by random forest importance from left to right)
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PREVIOUS WORK: EXPLAINING RANDOM FORESTS

Various approaches have been developed for gaining insight into how random forests use data for
predictions

Representative tree
* ldentify a tree that is representative of the forest
* One approach: Find tree that has smallest average distance to all other trees

Clusters of trees

« Compute distances between trees
- ldentify clusters via MDS, K-means, etc.

Banerjee, M., Y. Ding, and A. Noone (2012). "Identifying representative trees from ensembles". In: Statistics in Medicine 31.15, pp. 1601-1616. ISSN: 1097-0258. 10.1002/sim.4492.

Chipman, H. A., E. |. George, and R. E. McCulloch (1998). "Making sense of a forest of trees". In: Proceedings of the 30th Symposium on the Interface. , pp. 84-92. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.42.2598.

Shannon, W.D. and Banks, D. (1999), Combining classification trees using MLE. Statist. Med., 18: 727-740. hitps://doi.org/10.1002/(SICI)1097-0258(19990330)18:6<727::AlD-SIM61>3.0.CO;2-2
Sies, A. and |. V. Mechelen (2020). "C443: a Methodology to See a Forest for the Trees". In: Journal of Classification 37.3, pp. 730-753. ISSN: 0176-4268. https:/link.springer.com/article/10.1007/s00357-019-09350-4.
Weinberg, A. |. and M. Last (2019). "Selecting a representative decision tree from an ensemble of decision-tree models for fast big data classification". In: Journal of Big Data 6.1, p. 23. 10.1186/s40537-019-0186-3.
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PREVIOUS WORK: REPRESENTATIVE AND CLUSTERING OF TREES
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PREVIOUS WORK: REPRESENTATIVE AND CLUSTERING OF TREES

Identifying a representative tree or clusters of trees both require a distance metric

Banerjee, M., Y. Ding, and A. Noone (2012). "Identifying representative trees from ensembles". In: Statistics in Medicine 31.15, pp. 1601-1616. ISSN: 1097-0258. 10.1002/sim.4492.

Chipman, H. A,, E. |. George, and R. E. McCulloch (1998). "Making sense of a forest of trees". In: Proceedings of the 30th Symposium on the Interface. , pp. 84-92. http://citeseerx.ist.psu.edu/viewdoc/summary?
doi=10.1.1.42.2598.
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PREVIOUS WORK: REPRESENTATIVE AND CLUSTERING OF TREES

Identifying a representative tree or clusters of trees both require a distance metric
Two approaches:

Comparing Predictions Comparing Topology

Banerjee, M., Y. Ding, and A. Noone (2012). "Identifying representative trees from ensembles". In: Statistics in Medicine 31.15, pp. 1601-1616. ISSN: 1097-0258. 10.1002/sim.4492.

Chipman, H. A,, E. |. George, and R. E. McCulloch (1998). "Making sense of a forest of trees". In: Proceedings of the 30th Symposium on the Interface. , pp. 84-92. http://citeseerx.ist.psu.edu/viewdoc/summary?
doi=10.1.1.42.2598.
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PREVIOUS WORK: REPRESENTATIVE AND CLUSTERING OF TREES

Identifying a representative tree or clusters of trees both require a distance metric
Two approaches:

Comparing Predictions Comparing Topology

Fit metric Compares predictions from two
trees (Chipman, George, and McCulloch
(1998)

dry (Th,T2) = Zm yzl,yz2

where T is tree t with t € {1, 2}, y; is response, §;; is fitted value, and m is a metric such as
. . A N ~ )2
i Regressmn metric: m (yih yz2) = (yzl — yz2)

¢ Classification metric: m (gil,gn) — {(1) :)f “Z"Jil 7 Uio

Banerjee, M., Y. Ding, and A. Noone (2012). "Identifying representative trees from ensembles". In: Statistics in Medicine 31.15, pp. 1601-1616. ISSN: 1097-0258. 10.1002/sim.4492.

Chipman, H. A,, E. |. George, and R. E. McCulloch (1998). "Making sense of a forest of trees". In: Proceedings of the 30th Symposium on the Interface. , pp. 84-92. http://citeseerx.ist.psu.edu/viewdoc/summary?
doi=10.1.1.42.2598.
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PREVIOUS WORK: REPRESENTATIVE AND CLUSTERING OF TREES

Identifying a representative tree or clusters of trees both require a distance metric
Two approaches:

Comparing Predictions Comparing Topology
Fit metric Compares predictions from two Covariate metric Compares split variables from two trees
trees (Chipman, George, and McCulloch (Banerjee, Ding, and Noone (2012))
(1998)
Number of covariate mismatches for 77 and T%
dem(Th, T3) =

k
dry (Th,T2) = Zm yzl,yz2

where T is tree t with t € {1, 2}, y; is response, §;; is fitted value, and m is a metric such as
. . A N ~ )2
i Regressmn metric: m (yih yz2) = (yzl — yz2)

¢ Classification metric: m (gil,gn) — {(1) :)f “Z"Jil 7 Uio

Banerjee, M., Y. Ding, and A. Noone (2012). "Identifying representative trees from ensembles". In: Statistics in Medicine 31.15, pp. 1601-1616. ISSN: 1097-0258. 10.1002/sim.4492.

Chipman, H. A,, E. |. George, and R. E. McCulloch (1998). "Making sense of a forest of trees". In: Proceedings of the 30th Symposium on the Interface. , pp. 84-92. http://citeseerx.ist.psu.edu/viewdoc/summary?
doi=10.1.1.42.2598.
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PREVIOUS WORK: REPRESENTATIVE AND CLUSTERING OF TREES

Example of random forest tree clusters and corresponding central trees

Cluster A Cluster B Cluster C

Node depth
Node depth
=N
|
Node depth

10 4 _—

bill_length flipper_length bill_depth body._mass bill_length flipper_length bill_depth body_mass bill_length flipper_length bill_depth body. mass
Split variable Split variable Split variable

Clusters identified using multidimensional scaling with fit metric and representative trees
determined by tree with smallest average fit metric distance to all other trees in cluster.

39



FORESTR

40



FORESTR: PROJECT GOALS

FORESTR: Finding, Organizing, Representing, Explaining, Summarizing, and Thinning Random forests

Overview

* Use graph topology distance metric to identify tree topology patters patterns in forests

* Would like a distance metric for comparing tree topologies that is a proper mathematical distance to allow for
the computation of summary statistics

* Future work could consider using metric to create ensemble with a reduced number of trees

QY} I é}

™
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FORESTR: TREE DISTANCE METRIC

Guo, X., Srivastava, A. & Sarkar, S. A Quotient Space Formulation for Generative Statistical Analysis of Graphical Data. J Math Imaging Vis 63, 735-752 (2021). https://doi.org/10.1007/s10851-021-01027-1
Bal, Aditi Basu, et al. "Statistical Shape Analysis of Shape Graphs with Applications to Retinal Blood-Vessel Networks." arXiv preprint arXiv:2211.15514 (2022).

42


https://doi.org/10.1007/s10851-021-01027-1

FORESTR: TREE DISTANCE METRIC

Adapt graph metric from Guo (2021) to trees, which has nice properties:

Proper mathematical distance, invariant to transformations, registration between graphs, and computes
topological evolutions between graphs

A Quotient Space Formulation for Generative Statistical Analysis of
Graphical Data

Xiaoyang Guo'(® - Anuj Srivastava' - Sudeep Sarkar?

Received: 19 May 2020 / Accepted: 9 March 2021 / Published online: 31 March 2021
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021

Definition 1 (Graph Metric) Define a metric on the graph
space G according to:

20 pC

dg ([A1], [A2]) = min da (A1, PA,PT)

= min d, (A2, PA| PT) @)
PeP

-SD Mean +SD

Guo, X., Srivastava, A. & Sarkar, S. A Quotient Space Formulation for Generative Statistical Analysis of Graphical Data. J Math Imaging Vis 63, 735-752 (2021). https://doi.org/10.1007/s10851-021-01027-1
Bal, Aditi Basu, et al. "Statistical Shape Analysis of Shape Graphs with Applications to Retinal Blood-Vessel Networks." arXiv preprint arXiv:2211.15514 (2022).
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FORESTR: TREE DISTANCE METRIC

For an ensemble of treest =1,...,T, let
e (G; = weighted graph associated with tree ¢

e (V;, e:) = nodes and edges associated with G

bill_length_mm <= 41.6
samples = 153

value = [89, 47, 97]
class = Gentoo

/ \
{flipper_length_mm <= 205.5

bill_depth_mm <= 14.9
samples = 57
value = [82, 1, 1]
class = Adelie

samples = 96
value = [7, 46, 96]
class = Gentoo

bill_depth_mm <= 16.65
samples = 56
value = [82, 1, 0]

body_mass_g <= 4100.0 bill_depth_mm <= 17.65

samples =1
value = [0, 0, 1]
class = Gentoo

samples = 34
value = [6.0, 41.0, 0.0]
class = Chinstrap

samples = 62
value =[1, 5, 96]
class = Gentoo

class = Adelie

samples = 4
value = [1, 5, 0]
class = Chinstrap

samples = 3
value =[2, 1, 0]
class = Adelie

samples = 53
value = [80, 0, 0]
class = Adelie

samples = 29
value = [2, 39, 0]
class = Chinstrap

samples =5
value = [4, 2, 0]
class = Adelie

samples = 58
value = [0, 0, 96]
class = Gentoo

J

A tree in penguin random forest
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FORESTR: TREE DISTANCE METRIC

For an ensemble of treest =1,...,T, let

e (G; = weighted graph associated with tree ¢

" samples = 57

 (V4, er) = nodes and edges associated with G abesigzin

e A; = adjacency matrix associated with tree ¢

A tree in penguin random forest

0 2 4 6 8 10 12

Corresponding adjacency matrix
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FORESTR: TREE DISTANCE METRIC

For an ensemble of treest =1,...,T, let

e (G; = weighted graph associated with tree ¢ -
 (V4, er) = nodes and edges associated with G { TR { shie 17,30, 20
 A; = adjacency matrix associated with tree ¢ ‘S e A
class class = Chins'trép' t
/
A
R TS AR RS TRl [

A tree in penguin random forest

GOAL For all pairs of trees £ and u, want to compute
distance between trees:

dy([As]; [Au])

0 2 4 6 8 10 12

Corresponding adjacency matrix
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FORESTR: TREE DISTANCE METRIC

Compute the distance between trees G; and G, as

dy([At], [Au]) = min IPAP" — Au||* + ATr(PDyu)
S
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FORESTR: TREE DISTANCE METRIC

Compute the distance between trees G and G, as

dy([4), [Au]) = min [ PAPT — A, + ATx(PD,)
c
A\ J L J
Y Y

Accounts for Accounts for
edges nodes

where the optimization is implemented using Umeyama
algorithm or fast approximate quadratic programming and

e P = permutation matrix

e P = set of all permutation matrices of dimensionn X n

e )\ = tuning parameter specifying weight to place on
attributes

e D, = distance between node attributes of graphs ¢ and u
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FORESTR: TREE DISTANCE METRIC

Compute the distance between trees G and G, as

dy([4), [Au]) = min [ PAPT — A, + ATx(PD,)
S
A\ J L J
Y Y

Accounts for Accounts for
edges nodes

where the optimization is implemented using Umeyama
algorithm or fast approximate quadratic programming and

e P = permutation matrix

e P = set of all permutation matrices of dimensionn X n

e )\ =tuning parameter specifying weight to place on
attributes

e D, = distance between node attributes of graphs ¢ and u

For trees G and G,

Dy, = [dij = d(0(v}), o (v}))] € R™",

where at(vﬁ) represents a node attribute and d is some

distance metric.
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FORESTR: TREE DISTANCE METRIC

Compute the distance between trees G and G, as

dy([4), [Au]) = min [ PAPT — A, + ATx(PD,)
S
A\ J L J
Y Y

Accounts for Accounts for
edges nodes

where the optimization is implemented using Umeyama

algorithm or fast approximate quadratic programming and To account for the hierarchical nature of trees, we

, , consider node depth as an attribute.
e P = permutation matrix

e P = set of all permutation matrices of dimensionn X n

e )\ =tuning parameter specifying weight to place on Depth 0
attributes

e D, = distance between node attributes of graphs ¢ and u Depth 1
Root nod
For trees G; and Gy, % Rootnods

Depth 2 @ Internal node
— — t nXxXn

Dy = |dij = d(a(v7), au(v}))] € R*, ® Lootrose

where o (v}) represents a node attribute and d is some Depth 3

distance metric.
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FORESTR: TREE DISTANCE METRIC

Compute the distance between trees G; and G, as

dg([At], [Au]) = min |PAPY — Ay||* + XTr(PDyy)
c
\ RN J

Accounts for Accounts for
edges nodes

where the optimization is implemented using Umeyama

algorithm or fast approximate quadratic programming and To account for the hierarchical nature of trees, we

_ : consider node depth as an attribute.
e P = permutation matrix

e P = set of all permutation matrices of dimensionn X n

e )\ =tuning parameter specifying weight to place on Depth 0
attributes
e D, = distance between node attributes of graphs ¢ and u Depth 1
R d
For trees G and G, ® Footriode
Depth 2 @ Internal node
t nxn
[dZJ (at( ) o a’u( )) ] cR @ Leafnode
where a; (vf) represents the node depth associated with node % pepth 3

in tree t.
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FORESTR: TREE DISTANCE METRIC

Compute the distance between trees G; and G, as

dg([At], [Au]) = main |PAPY — Ay||* + ATr(PDyy)
S
\ RN J

Accounts for Accounts for
edges nodes

Shallow Forest: All Trees

4.0
4.0
3.5 354
04
3.0 3.0
2.5 2.5 A
E=]
o
S, 2.0 2.0
(]
g 1.5
= 15 '
1.0 A
1.0
24 0.5 1
0.5
0.0
0.0 RRECNIRART SREIRANGNT T~ NEUI NN P 2EARNER A" Q9T RAARY
: bill_de;:;th_mm bill_Ienéth_mm ﬂipper_le'ngth_mm body_ﬁnass_g 0 10 20 30 40 50
Split variable

Dendrogram of complete linkage clusters based on
pairwise distances

(ordered by random forest importance from left to right)

All pairwise distances
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FORESTR: TREE DISTANCE METRIC

Compute the distance between trees G; and G, as

dg([At], [Au]) = main |PAPY — Ay||* + ATr(PDyy)
S
\ RN J

Accounts for Accounts for
edges nodes

Trees by Cluster

Node depth

>~
T T T T T T
& S & S & S & & S
¢ S & & vy &’ & s & & s & & &
R SV A S S S S & S
¥ & & sV ¥ & <& S ¥ & & Y ¥ & O ¥ & & S
NG Y &7 < N 7 &7 R NG Y &7 RS S\ N &7 o D Y &7 o
& & & N &
Split variable

(ordered by random forest importance from left to right)
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FORESTR: TREE DISTANCE METRIC

Compute the distance between trees G; and G, as

dg([At], [Au]) = main |PAPY — Ay||* + ATr(PDyy)
S
\ RN J

Accounts for Accounts for
edges nodes
Cluster 4
19 33 36 41 45
< ’ // 7 ‘\\ /
2 / 7 4
[} ,
T 14 &L — d L D N < L
[} ~ { I ™ ~
T . “‘ e [ N ~ - ]4\
=2 | |
S S S S S
50& ‘«\Q\é\ ~<\§& & 30@ &é\ &\&6\ & &\f& ‘o(\\é\ (\(f(\@ &7 ﬁo@ x\@& ’0@6\ &’ &\SQ& (\506\ \\f& &7
SN 7 & & SN 7 S & SN 7 Q & N 7 S & SN N S &
®) ) O ) )
N & \e}\g & Y N & \é\q & sV N & \e‘\g & Y N & \e‘\q &Y N & \ef\q & BV
N7 N7 P ) ‘6\\/ N &7 o ‘6\\/ N7 &7 ) ‘6\\/ N7 &7 0 ‘6\\/ N7 &7 e
S S S S S

Split variable .
(ordered by random forest importance from left to right)
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FORESTR: CENTRAL TREE
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FORESTR: CENTRAL TREE

Given a set of T' graphs, denoted as G; € G,t = 1,...,m, and their
respective adjacency matrices, A; € R™*", the mean graph is obtained by
minimizing the sum of squared distances:

[4,] = argmin ; dy([4], [A4))

The mean graph is guaranteed to be unique, and the optimization is
performed using a greedy optimization algorithm.
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FORESTR: CENTRAL TREE

Given a set of T' graphs, denoted as G; € G,t = 1,...,m, and their
respective adjacency matrices, A; € R"*", the mean graph is obtained by .
minimizing the sum of squared distances: / \

4,] = argmin'} " dy([4], [47])? /

AERnxn —1 /22 -19 ) /7\ 2\
/ \ 6 ) -
5

The mean graph is guaranteed to be unique, and the optimization is % 3 @ @ @ 3
performed using a greedy optimization algorithm. \ /
. . . . . . . . 26 25 21 16 9
This optimization results in violations of the properties of trees: \\ / \
28 27 11 10
15/12
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FORESTR: CENTRAL TREE

Given a set of T' graphs, denoted as G; € G,t = 1,...,m, and their
respective adjacency matrices, A; € R"*", the mean graph is obtained by
minimizing the sum of squared distances:

[4,] = argmin ; dy([4], [A4))

The mean graph is guaranteed to be unique, and the optimization is
performed using a greedy optimization algorithm.

This optimization results in violations of the properties of trees:

Currently, we compute a central tree as the three with the smallest
distance to the mean graph. That is, let A, represent the mean graph, the

central tree of a set of trees is computed as

Acentras = argmin dy(A4,A4,).
AE{Al,...,AT}
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FORESTR: CENTRAL TREE

Given a set of T' graphs, denoted as G; € G,t = 1,...,m, and their
respective adjacency matrices, A; € R™*", the mean graph is obtained by
minimizing the sum of squared distances:

[4,] = argmin ; dy([4], [A4))

The mean graph is guaranteed to be unique, and the optimization is
performed using a greedy optimization algorithm.

This optimization results in violations of the properties of trees:

Currently, we compute a central tree as the three with the smallest
distance to the mean graph. That is, let A, represent the mean graph, the

central tree of a set of trees is computed as

Acentras = argmin dy(A4,A4,).
AE{Al,...,AT}

Frequency
-
N ~ = N
w w o w

o

Node depth

Shallow Forest

v

22 24 256 258
Distance to Mean Graph

bill_dep‘th_mm bill_leng';th_mm ﬂipper_le'ngth_mm body_r'nass_g

Split variable
(ordered by random forest importance from left to right)
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FORESTR: CENTRAL TREE WITHIN CLUSTERS

Trees by Cluster

Node depth

24
v T v v L v ' ' ' ' v v v v ' ' 1 v ' ' '
& & & L0 & & & L0 & & & L0 & & & L2 & & & L0
Q(’(\/ §/ 6Q'(\/ Q2 Q,:s\/ §/ é'(\/ 2 Q(’(\/ &s'(\/ é'(\/ Q2 Q(S\/ é’Q/ é(\/ @’b Q':‘Q/ é'(\/ §/ é"b
b?/ \Q«Q \0(‘ bﬁ ’ b@ \z(\ \0(\ 64‘ 7 6® \®¢ \Q/Q é* ’ 6@ \z(\ \0(\ 8\ ’ 6?' \z(\ \00 8‘ ’
Ny & sz Sy NY & ng < N N sz Sy N & Qex/ Y N & Q@«/ <
NS N N N N
Split variable

(ordered by random forest importance from left to right)

/\
NN
W AN N N

Central trees from each cluster
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FORESTR: PRODUCT INSPECTION APPLICATION
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FORESTR: PRODUCT INSPECTION APPLICATION

s500 data

* Information from a product inspection
application (Kegelmeyer 2015)

* 20 numeric features associated with 1000
products identified as good or bad

+ Separated into training and testing sets
with 500 observations in each set

Predictor Variable Values Scaled
°
&
3

0.001

Predict good/bad

25 trees

¢ Maximum depth 5

* Fit using scikit-learn and all other default
parameters

Predictor Variable Values Scaled
°
o
3

0.004

1.001

v v v ' v ' v ' v v v v v ' ' v v v v v
1001 1004 1005 1017 f014 1006 f019 1002 1009 015 1020 1007 f016 1003 f012 f018 fo11 1013 1008 010
Predictor Variables

Truth -1 1

1001 1004 1005 1017 f014 1006 1019 1002 1009 1015 1020 1007 016 1003 f012 1018 011 013 1008 010
Predictor Variables

Truth -1 1

Parallel coordinate plots of s500 training (top) and testing (bottom) data. Lines are colored
by the inspection labels, and the features are ordered by Gini importance.

P. Kegelmeyer, T. M. Shead, J. Crussell, K. Rodhouse, D. Robinson, C. Johnson, D. Zage, W. Davis, J. Wendt, T. Cayton J. Doak, R. Colbaugh, K. Glass, B.
Jones, and J. Shelburg. Counter adversarial data analytics Technical report, Sandia National Labs (SAND2015-3711), 2015.
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Figure 4-27.: Trace plot of the trees in the s500 random forest.

Dendrogram of complete linkage clusters
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FORESTR: PRODUCT INSPECTION APPLICATION

The number of trees in
clusters 3 and 4 is much less
than the other clusters (e.g.,
only 1 tree in cluster 3).

* Could these be outlier
trees?

* How would removing them
from the model affect
model performance?

Node depth

Trees by Cluster

01 N T A\ RN /{/’ Pl \ '\

||||||||||||||||||||

vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv

||||||||||||||||||||

AR CERRRREE R Rl Rt

Split variable .
(ordered by random forest importance from left to right)

Trace plots of the tree clusters from the s500 random forest.
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FORESTR: PRODUCT INSPECTION APPLICATION

The central trees
help identify differences
between the clusters:

* the depths at which leaf
nodes begin to occur and

* the number of leaf nodes
at a depth.

L1\
NN

| \ /
I\ I /
AU TN A/

ALANNN, 00N N /L
AN/ TN IS/ INN AN N7/ I\

Central trees from each cluster

\
\
\

|
A\
I\
AL
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FORESTR: FUTURE RESEARCH DIRECTIONS
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FORESTR: FUTURE RESEARCH DIRECTIONS

* Account for additional node attributes
= (e.g., split feature)

* Consider approaches to identify repeating sub-graphs
= (i.e., split patterns that are common among the forest)

* Use distances to reduce ensemble size and consider affect on predictive performance
= Build up a model using a central tree or central trees from identified clusters

= Trim down a model based on their distance to central tree or cluster central trees

% tree reduction
|

performance
decrease

1
1
:
Mode| =F-==————Ngo-======m—m————— :L ----------- Allowable
Accuracy !
1
1
1

More Trees = Less Trees =
Less Interpretable More Interpretable
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